|
|
| | |
| | |
| | |
|
Dk[ A( k) ] = a( k) ® |
å
| a( k) = A( k) +C |
| | |
|
d
dx
|
[ F(x) ] = f( x) ® |
ó õ
|
f( x)dx=F( x) +C |
|
| | |
|
|
å
| k-p= |
1
-p+1
|
( k-1) -p+1+C, if p ¹ 1 |
| | |
|
ó õ
|
x-ndx= |
1
-n+1
|
x-n+1+C, if n ¹ 1 |
|
|
|
å
| |
1
k1
|
=H( k) +C Harmonic Series |
| | |
| | |
|
ó õ
|
rxdx= |
1
ln( r)
|
rx+C, r ¹ 1 |
|
| | |
|
|
n å
k=m
|
a( k) = A( k) |
ê ê
|
n+1 m
|
=A( n+1) -A( m) |
| | |
|
ó õ
|
b
a
|
f( x) dx=F( x) |
ê ê
|
b a
|
=F( b) -F( a) |
|
|
Dk |
é ë
|
k-1 å
j=m
|
a( j) |
ù û
|
=a( k) |
| | |
|
d
dx
|
|
ó õ
|
x
a
|
f( t) dt=f( x) |
|
| | |
|
Dk[ ukvk] = ukDk[ vk] +vk+1Dk[ uk] |
| | |
|
d
dx
|
[ uv] = u |
dv
dx
|
+v |
du
dx
|
|
|
|
|
n å
k=0
|
Uk vk=UkVk |
ê ê
|
n+1 0
|
- |
n å
k=0
|
Vk+1uk |
| | |
|
ó õ
|
b
a
|
u dv=uv |
ê ê
|
b a
|
- |
ó õ
|
b
a
|
v du |
|
|
|
¥ å
k=m
|
a( k) = |
lim
n® ¥
|
|
n å
k=m
|
a( k) |
| | |
|
ó õ
|
¥
a
|
f( x)dx= |
lim
b® ¥
|
|
ó õ
|
b
a
|
f( x) dx |
|
|
|
|
0 £ a( k) £ b( k) and |
¥ å
k=m
|
b( k) conv. |
|
|
|
|
| | |
|
|
0 £ f( x) £ g( x) and |
ó õ
|
¥
a
|
g( x) dx conv. |
|
|
|
|
|
|
|
|
0 £ a( k) £ b( k) and |
¥ å
k=m
|
a( k) div. |
|
|
|
|
| | |
|
|
0 £ f( x) £ g( x) and |
ó õ
|
¥
a
|
f( x) dx div. |
|
|
|
|
|
| | |
|
|
lim
n® ¥
|
an ¹ 0 Þ |
¥ å
k=1
|
ak diverges |
| | |
|
lim
x® ¥
|
f(x) = c ¹ 0 Þ |
ó õ
|
¥
1
|
f( x) dx div. |
|
|
Fns as series ( f( x) = |
¥ å
k=1
|
akxk ) |
| | |
Fns as integrals (G( x) = |
ó õ
|
¥
0
|
tx-1e-t dt ) |
|
|
|
¥ å
k=0
|
|
1
k!
|
f( k) ( c) ( x-c) k (Taylor Series ) |
| | |